解加全简介

发布时间:2021-04-27 17:31    阅读量:1

解加全,男,1986年12月生,山西山阴人,讲师,博士,博士后,2006.9-2010.7在山西大同大学数学与计算机科学学院应用数学专业获得理学学士学位;2011.9-2014.1在燕山大学理学院计算数学专业获得理学硕士学位;2014.9-2018.6在太原科技大学机械工程学院机械工程专业获得工学博士学位;2018.8-2020.8在太原理工大学机械学院从事博士后研究。累计发表SCI论文20余篇,其中二区及以上论文10余篇,授权发明专利4项,参与省级或国家级项目4项,主持国家自然科学基金青年基金1项,博士论文获《山西省优秀博士学位论文》,担任《journal of Computational and Applied Mathematics》,《Applied Mathematics and Computation》,《Numerical methods for Partial Differential Equations》等多个SCI期刊的审稿人。联系方式:xjq371195982@163.com。

论文:

  1. Xie J, Ren Z, Li Y, et al. Numerical scheme for solving system of fractional partial differential equations with Volterra‐type integral term through two‐dimensional block‐pulse functions[J]. Numerical Methods for Partial Differential Equations, 2019, 35(5): 1890-1903. (SCI中科院二区)

  2. Xie J, Yi M. Numerical research of nonlinear system of fractional Volterra–Fredholm integral–differential equations via Block-Pulse functions and error analysis[J]. Journal of Computational and Applied Mathematics, 2019, 345: 159-167. (SCI中科院二区TOP)

  3. Xie J, Yao Z, Gui H, et al. A two-dimensional Chebyshev wavelets approach for solving the Fokker-Planck equations of time and space fractional derivatives type with variable coefficients[J]. Applied Mathematics & Computation, 2018, 332:197-208. (SCI中科院一区TOP)

  4. Xie J, Zheng Y, Ren Z, et al. Numerical vibration displacement solutions of fractional drawing self-excited vibration model based on fractional Legendre functions[J]. Complexity, vol. 2019, Article ID 9234586, 10 pages, 2019. (SCI中科院二区)

  5. Xie J, Huang Q, Zhao F. Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations in two-dimensional spaces based on Block Pulse functions[J]. Journal of Computational and Applied Mathematics, 2017, 317:565-572. (SCI中科院二区TOP)

  6. Xie J, Wang T, Ren Z, et al. Haar wavelet method for approximating the solution of a coupled system of fractional-order integral–differential equations[J]. Mathematics and Computers in Simulation, 2019, 163: 80-89.SCI中科院二区

  7. Xie J. Numerical computation of fractional partial differential equations with variable coefficients utilizing the modified fractional Legendre wavelets and error analysis[J]. Mathematical Methods in the Applied Sciences, 2021. (SCI中科院二区)

  8. Xie J, Huang Q, Yang X. Numerical solution of the one-dimensional fractional convection diffusion equations based on Chebyshev operational matrix[J]. SpringerPlus, 2016, 5(1): 1149. SCI收录

  9. Xie J, Huang Q, Zhao F, et al. Block pulse functions for solving fractional Poisson type equations with Dirichlet and Neumann boundary conditions[J]. Boundary Value Problems, 2017, 2017(1): 32. SCI收录)

  10. Xie J, Yao Z, Wu R, et al. Block-pulse functions method for solving three-dimensional fractional Poisson type equations with Neumann boundary conditions[J]. Boundary Value Problems, 2018, 2018(1): 26.SCI收录)

  11. Xie J, Zhao F, Yao Z, et al. Three-Variable Shifted Jacobi Polynomials Approach for Numerically Solving Three-Dimensional Multi-Term Fractional-Order PDEs with Variable Coefficients[J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2018, 115(1): 67-84.SCI收录

    [11] 解加全, 张君. 新型钻机的研制[J]. 煤矿机械, 2019, 40(02):103-104.

    [12] Xie J, Gong X, Shi W, et al. Applying the three-dimensional block-pulse functions to solve system of Volterra-Hammerstein integral equations[J], Numerical Methods for Partial Differential Equations, 2018. (SCI: 中科院二区)

    [13] Zhao F , Huang Q , Xie J , et al. Chebyshev polynomials approach for numerically solving system of two-dimensional fractional PDEs and convergence analysis[J]. Applied Mathematics & Computation, 2017, 313:321-330. (SCI: 中科院一区)

    项目:

  12. 山西省留学基金,2017-081,基于边界元法和功函数的金属基复合板矫直过程界面结合强度研究, 2017.6-2019.63万,已结题,参与;

  13. 山西省自然科学基金项目,201601D011051,基于多区域边界元和晶体塑性有限元耦合法的复合宽厚板矫直机理研究,2016.7-2018.123万,已结题,参与;

  14. 山西省科技重大专项,20181102015,精密不锈钢极薄带智能化生产装备及生产线,2019.1-2022.12905万,在研,参与;

  15. 国家重点研发计划,2018YFAO707300,高品质金属复合板高效制备原理与技术基础,2020.5-2025.42732万,在研,参与;

  16. 国家自然科学基金项目,52005360,轧制变形区自激振动分数阶阻尼建模与机理研究,2020.1-2023.1224万,在研,主持;

    专利:

    [1] 和东平,王涛,任忠凯,韩建超,冯光,刘元铭,解加全,马晓宝,贾燚。一种液力混合式径向锻造机液压系统。授权公告号:CN109751289B,授权公告日:2020-07-03

    [2] 和东平,王涛,任忠凯,韩建超,冯光,刘元铭,解加全,马晓宝,贾燚。一种锻造用去氧化皮液压装置。授权公告号:CN109773639B,授权公告日:2020-04-07

    [3] 和东平,王涛,任忠凯,韩建超,刘元铭,解加全,马晓宝,付晓斌,张志雄。一种八轴驱动的多点液压拉伸垫液压系统。授权公告号:CN 109723700 B,授权公告日:2020-01-03

    [4] 和东平,王涛,任忠凯,韩建超,解加全,刘江林,刘元铭。一种波纹辊轧机液压伺服系统位置补偿控制方法。授权公告号: CN 109158430 B,授权公告日:2019-11-01

    奖励:

    2018年度山西省优秀博士学位论文》和《2018年度太原科技大学优秀博士学位论文》